
modulegraph Documentation
Release 0.19

Ronald Oussoren

Sep 08, 2021

Contents

1 Release history 3

2 License 11

3 Commandline tools 13

4 modulegraph.modulegraph — Find modules used by a script 15

5 modulegraph.find_modules — High-level module dependency finding interface 23

6 modulegraph.util — Utility functions 25

7 modulegraph.zipio — Read-only filesystem access 27

8 Online Resources 29

9 Indices and tables 31

Python Module Index 33

Index 35

i

ii

modulegraph Documentation, Release 0.19

modulegraph determines a dependency graph between Python modules primarily by bytecode analysis for import
statements.

modulegraph uses similar methods to modulefinder from the standard library, but uses a more flexible internal
representation, has more extensive knowledge of special cases, and is extensible.

Contents:

Contents 1

https://docs.python.org/3/library/modulefinder.html#module-modulefinder

modulegraph Documentation, Release 0.19

2 Contents

CHAPTER 1

Release history

1.1 0.19

• Fix incorrect path when package __init__ is an extension.

1.2 0.18

• Avoid exception when one of the items on “packages” is not a package (module-
graph.find_modules.find_needed_modules)

• #45: Modulegraph.foldReferences() called the wrong method

Reported by Anthony Foglia.

1.3 0.17

• The .pyc format changed a little in Python 3.7

1.4 0.16

Features:

• Add LICENSE file to distribution

• Don’t rely on pkg_resources to calculate package version

• Replace use of optparse by argparse as the former is deprecated

Patch by htgoebel

• Attempt to reduce the maximum recursion needed to create the ModuleGraph

3

modulegraph Documentation, Release 0.19

• Don’t include the file type in the result from zipio.getmode

• Fix mismatched indents/dedents in ModuleGraph debug output

Patch by codewarrior0

Bug fixes:

• Testsuite now passes on Windows (testd through appveyor)

This only required changes to remove platform dependencies from the test suite.

1.5 0.15

Features:

• Issue #39: Traceback with for a syntax error when compiling async function

On Python 3.5 some (invalid) async function definitions caused a modulegraph traceback, instead of adding
“InvalidSourceModule” nodes to the graph.

• Issue #40: The graph now contains nodes of type “InvalidRelativeImport” for attempts to use relative imports
that walk outside of a toplevel package.

• Module modulegraph.find_modules can no longer be used a script, use python -m modulegraph
instead.

Bugfixes:

• Issue 38: Dot output broken in Python 3

Patch by user elnuno on bitbucket.

• Issue 36: Make sure test suite works on systems other than macOS

Patch by Hartmut Goebel

• Add support for “async def” to the AST scanner, needed to properly recognize imports in async function defini-
tions.

1.6 0.14

Bugfixes:

• #33: Error scanning bytecode on python 3.4 or later

The code using dis.get_instructions to scan the bytecode on Python 3.4 or later didn’t work properly
causing problems when trying to scan bytecode.

1.7 0.13

• Various documentation fixes by Thomas Kluyver.

• Fix incompatibility with recent versions of setuptools

See also issue #206 in py2apps tracker for more information.

4 Chapter 1. Release history

https://github.com/ronaldoussoren/py2app/issues/206/py2app-doesnt-work-with-release-433-of

modulegraph Documentation, Release 0.19

• Python 3: Ignore BOM at start of input files when compiling them.

This matches the behavior of CPython, and avoids hard to diagnose problems. See also issue #178 in the py2app
tracker

• Python 3.6 introduced a new bytecode format (wordcode), adjust the bytecode scanner for that.

1.8 0.12.1

• Issue #25: Complex python files could cause an “maximum recursion depth exceeded” exception due to using
stack-based recursion to walk the module AST.

1.9 0.12

• Added ‘modulegraph.modulegraph.InvalidSourceModule’. This graph node is used for Python source modules
that cannot be compiled (for example because they contain syntax errors).

This is primarily useful for being able to create a graph for packages that have python 2.x or python 3.x com-
patibility in separate modules that contain code that isn’t valid in the “other” python version.

• Added ‘modulegraph.modulegraph.InvalidCompiledModule’. This graph node is used for Python bytecode
modules that cannot be loaded.

• Added ‘modulegraph.modulegraph.NamespacePackage’.

Patch by bitbucket user htgoebel.

• No longer add a MissingModule node to the graph for ‘collections.defaultdict’ when using ‘from collections
import defaultdict’ (‘collections.defaultdict’ is an attribute of ‘collections’, not a submodule).

• Fixed typo in ModuleGraph.getReferences()

• Added ModuleGraph.getReferers(tonode). This methods yields the nodes that are referencing tonode (the re-
verse of getReferences)

• The graph will no longer contain MissingModule nodes when using ‘from . . . import name’ to import a global
variable in a python module.

There will still be MissingModule nodes for global variables in C extentions, and for ‘from missing import
name’ when ‘missing’ is itself a MissingModule.

• Issue #18: Don’t assume that a PEP 302 loader object has a path attribute. That attribute is not documented
and is not always present.

1.10 0.11.2

•

1.11 0.11.1

• Issue #145: Don’t exclude the platform specific ‘path’ modules (like ntpath)

1.8. 0.12.1 5

https://github.com/ronaldoussoren/py2app/issues/178/python-3-syntaxerror-invalid-character-in
https://github.com/ronaldoussoren/py2app/issues/178/python-3-syntaxerror-invalid-character-in

modulegraph Documentation, Release 0.19

1.12 0.11

This is a feature release

1.12.1 Features

• Hardcode knowlegde about the compatibility aliases in the email module (for python 2.5 upto 3.0).

This makes it possible to remove a heavy-handed recipe from py2app.

• Added modegraph.zipio.getmode to fetch the Unix file mode for a file.

• Added some handy methods to modulegraph.modulegraph.ModuleGraph.

1.13 0.10.5

This is a bugfix release

• Don’t look at the file extension to determine the file type in modulegraph.find_modules.parse_mf_results, but
use the class of the item.

• Issue #13: Improved handing of bad relative imports (“from .foo import bar”), these tended to raise confusing
errors and are now handled like any other failed import.

1.14 0.10.4

This is a bugfix release

• There were no ‘classifiers’ in the package metadata due to a bug in setup.py.

1.15 0.10.3

This is a bugfix release

1.15.1 Bugfixes

• modulegraph.find.modules.parse_mf_results failed when the main script of a py2app module
didn’t have a file name ending in ‘.py’.

1.16 0.10.2

This is a bugfix release

6 Chapter 1. Release history

modulegraph Documentation, Release 0.19

1.16.1 Bugfixes

• Issue #12: modulegraph would sometimes find the wrong package __init__ module due to using the wrong
search method. One easy way to reproduce the problem was to have a toplevel module named __init__.

Reported by Kentzo.

1.17 0.10.1

This is a bugfix release

1.17.1 Bugfixes

• Issue #11: creating xrefs and dotty graphs from modulegraphs (the –xref and –graph options of py2app) didn’t
work with python 3 due to use of APIs that aren’t available in that version of python.

Reported by Andrew Barnert.

1.18 0.10

This is a minor feature release

1.18.1 Features

• modulegraph.find_modules.find_needed_modules claimed to automaticly include subpackages
for the “packages” argument as well, but that code didn’t work at all.

• Issue #9: The modulegraph script is deprecated, use “python -mmodulegraph” instead.

• Issue #10: Ensure that the result of “zipio.open” can be used in a with statement (that is, with zipio.
open(...) as fp.

• No longer use “2to3” to support Python 3.

Because of this modulegraph now supports Python 2.6 and later.

• Slightly improved HTML output, which makes it easier to manipulate the generated HTML using JavaScript.

Patch by anatoly techtonik.

• Ensure modulegraph works with changes introduced after Python 3.3b1.

• Implement support for PEP 420 (“Implicit namespace packages”) in Python 3.3.

• modulegraph.util.imp_walk is deprecated and will be removed in the next release of this package.

1.18.2 Bugfixes

• The module graph was incomplete, and generated incorrect warnings along the way, when a subpackage con-
tained import statements for submodules.

An example of this is sqlalchemy.util, the __init__.py file for this package contains imports
of modules in that modules using the classic relative import syntax (that is import compat to import

1.17. 0.10.1 7

modulegraph Documentation, Release 0.19

sqlalchemy.util.compat). Until this release modulegraph searched the wrong path to locate these mod-
ules (and hence failed to find them).

1.19 0.9.2

This is a bugfix release

1.19.1 Bugfixes

• The ‘packages’ option to modulegraph.find_modules.find_modules ignored the search path argument but always
used the default search path.

• The ‘imp_find_modules’ function in modulegraph.util has an argument ‘path’, this was a string in previous
release and can now also be a sequence.

• Don’t crash when a module on the ‘includes’ list doesn’t exist, but warn just like for missing ‘packages’ (mod-
ulegraph.find_modules.find_modules)

1.20 0.9.1

This is a bugfix release

1.20.1 Bug fixes

• Fixed the name of nodes imports in packages where the first element of a dotted name can be found but the
rest cannot. This used to create a MissingModule node for the dotted name in the global namespace instead of
relative to the package.

That is, given a package “pkg” with submodule “sub” if the “__init__.py” of “pkg” contains “import sub.nomod”
we now create a MissingModule node for “pkg.sub.nomod” instead of “sub.nomod”.

This fixes an issue with including the crcmod package in application bundles, first reported on the pythonmac-sig
mailinglist by Brendan Simon.

1.21 0.9

This is a minor feature release

Features:

• Documentation is now generated using sphinx and can be viewed at <http://packages.python.org/modulegraph>.

The documention is very rough at this moment and in need of reorganisation and language cleanup. I’ve basiclly
writting the current version by reading the code and documenting what it does, the order in which classes and
methods are document is therefore not necessarily the most useful.

• The repository has moved to bitbucket

• Renamed modulegraph.modulegraph.AddPackagePath to addPackagePath, likewise
ReplacePackage is now replacePackage. The old name is still available, but is deprecated and
will be removed before the 1.0 release.

8 Chapter 1. Release history

http://pypi.python.org/pypi/sphinx
http://packages.python.org/modulegraph

modulegraph Documentation, Release 0.19

• modulegraph.modulegraph contains two node types that are unused and have unclear semantics:
FlatPackage and ArchiveModule. These node types are deprecated and will be removed before 1.0
is released.

• Added a simple commandline tool (modulegraph) that will print information about the dependency graph of
a script.

• Added a module (zipio) for dealing with paths that may refer to entries inside zipfiles (such as source paths
referring to modules in zipped eggfiles).

With this addition modulegraph.modulegraph.os_listdir is deprecated and it will be removed be-
fore the 1.0 release.

Bug fixes:

• The __cmp__ method of a Node no longer causes an exception when the compared-to object is not a Node.
Patch by Ivan Kozik.

• Issue #1: The initialiser for modulegraph.ModuleGraph caused an exception when an entry on the path
(sys.path) doesn’t actually exist.

Fix by “skurylo”, testcase by Ronald.

• The code no longer worked with python 2.5, this release fixes that.

• Due to the switch to mercurial setuptools will no longer include all required files. Fixed by adding a MANI-
FEST.in file

• The method for printing a .dot representation of a ModuleGraph works again.

1.22 0.8.1

This is a minor feature release

Features:

• from __future__ import absolute_import is now supported

• Relative imports (from . import module) are now supported

• Add support for namespace packages when those are installed using option
--single-version-externally-managed (part of setuptools/distribute)

1.23 0.8

This is a minor feature release

Features:

• Initial support for Python 3.x

• It is now possible to run the test suite using python setup.py test.

(The actual test suite is still fairly minimal though)

1.22. 0.8.1 9

modulegraph Documentation, Release 0.19

10 Chapter 1. Release history

CHAPTER 2

License

Copyright (c) Bob Ippolito

Parts are copyright (c) 2010-2014 Ronald Oussoren

2.1 MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

11

modulegraph Documentation, Release 0.19

12 Chapter 2. License

CHAPTER 3

Commandline tools

The package can be used as a script using “python -mmodulegraph”.

This script calculates the module graph for the scripts passed on the commandline and by default prints a list of
modules in the objectgraph, and their type and location.

The script has a number of options to change the output:

• -d: Increase the debug level

• -q: Clear the debug level (emit minimal output)

• -m: The arguments are module names instead of script files

• -x name: Add name to the list of excludes

• -p path: Add path to the module search path

• -g: Emit a .dot file instead of a list of modules

• -h: Emit a .html file instead of a list of modules

3.1 Deprecation warning

The package also installs a command-line tool named “modulegraph”, this command-line tool is deprecated and will
be removed in a future version.

13

modulegraph Documentation, Release 0.19

14 Chapter 3. Commandline tools

CHAPTER 4

modulegraph.modulegraph — Find modules used by a script

This module defines ModuleGraph, which is used to find the dependencies of scripts using bytecode analysis.

A number of APIs in this module refer to filesystem path. Those paths can refer to files inside zipfiles (for example
when there are zipped egg files on sys.path). Filenames referring to entries in a zipfile are not marked any way,
if "somepath.zip" refers to a zipfile, that is "somepath.zip/embedded/file" will be used to refer to
embedded/file inside the zipfile.

4.1 The actual graph

class modulegraph.modulegraph.ModuleGraph([path[, excludes[, replace_paths[, implies[,
graph[, debug]]]]]])

Create a new ModuleGraph object. Use the run_script() method to add scripts, and their dependencies to
the graph.

Parameters

• path – Python search path to use, defaults to sys.path

• excludes – Iterable with module names that should not be included as a dependency

• replace_paths – List of pathname rewrites (old, new). When this argument is
supplied the co_filename attributes of code objects get rewritten before scanning them
for dependencies.

• implies – Implied module dependencies, a mapping from a module name to the list of
modules it depends on. Use this to tell modulegraph about dependencies that cannot be
found by code inspection (such as imports from C code or using the __import__()
function).

• graph – A precreated Graph object to use, the default is to create a new one.

• debug – The ObjectGraph debug level.

15

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/functions.html#__import__

modulegraph Documentation, Release 0.19

run_script(pathname[, caller])
Create, and return, a node by path (not module name). The pathname should refer to a Python source file
and will be scanned for dependencies.

The optional argument caller is the the node that calls this script, and is used to add a reference in the
graph.

import_hook(name[[, caller[, fromlist[, level, [, attr]]]])
Import a module and analyse its dependencies

Parameters

• name – The module name

• caller – The node that caused the import to happen

• fromlist – The list of names to import, this is an empty list for import name and a
list of names for from name import a, b, c.

• level – The import level. The value should be -1 for classical Python 2 imports, 0 for
absolute imports and a positive number for relative imports (where the value is the number
of leading dots in the imported name).

• attr – Attributes for the graph edge.

implyNodeReference(node, other, edgeData=None)
Explictly mark that node depends on other. Other is either a node or the name of a module that will be
searched for as if it were an absolute import.

createReference(fromnode, tonode[, edge_data])
Create a reference from fromnode to tonode, with optional edge data.

The default for edge_data is "direct".

getReferences(fromnode)
Yield all nodes that fromnode refers to. That is, all modules imported by fromnode.

Node None is the root of the graph, and refers to all notes that were explicitly imported by
run_script() or import_hook(), unless you use an explicit parent with those methods.

New in version 0.11.

getReferers(tonode, collapse_missing_modules=True)
Yield all nodes that refer to tonode. That is, all modules that import tonode.

If collapse_missing_modules is false this includes refererences from MissingModule nodes, otherwise
MissingModule nodes are replaced by the “real” nodes that reference this missing node.

New in version 0.12.

foldReferences(pkgnode)
Hide all submodule nodes for package pkgnode and add ingoing and outgoing edges to pkgnode based on
the edges from the submodule nodes.

This can be used to simplify a module graph: after folding ‘email’ all references to modules in the ‘email’
package are references to the package.

findNode(name)
Find a node by identifier. If a node by that identifier exists, it will be returned.

If a lazy node exists by that identifier with no dependencies (excluded), it will be instantiated and returned.

If a lazy node exists by that identifier with dependencies, it and its dependencies will be instantiated and
scanned for additional depende

16 Chapter 4. modulegraph.modulegraph — Find modules used by a script

https://docs.python.org/3/library/constants.html#None

modulegraph Documentation, Release 0.19

create_xref([out])
Write an HTML file to the out stream (defaulting to sys.stdout).

The HTML file contains a textual description of the dependency graph.

graphreport([fileobj[, flatpackages]])

Todo: To be documented

report()
Print a report to stdout, listing the found modules with their paths, as well as modules that are missing, or
seem to be missing.

4.1.1 Mostly internal methods

The methods in this section should be considered as methods for subclassing at best, please let us know if you need
these methods in your code as they are on track to be made private methods before the 1.0 release.

Warning: The methods in this section will be refactored in a future release, the current architecture makes it
unnecessarily hard to write proper tests.

class modulegraph.modulegraph.ModuleGraph

_determine_parent(caller)
Returns the node of the package root voor caller. If caller is a package this is the node itself, if the node is
a module in a package this is the node of for the package and otherwise the caller is not a package and the
result is None.

_find_head_package(parent, name[, level])

Todo: To be documented

_load_tail(mod, tail)
This method is called to load the rest of a dotted name after loading the root of a package. This will
import all intermediate modules as well (using import_module()), and returns the module node for
the requested node.

Note: When tail is empty this will just return mod.

Parameters

• mod – A start module (instance of Node)

• tail – The rest of a dotted name, can be empty

Raises ImportError – When the requested (or one of its parents) module cannot be found

Returns the requested module

4.1. The actual graph 17

https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ImportError

modulegraph Documentation, Release 0.19

_ensure_fromlist(m, fromlist)
Yield all submodules that would be imported when importing fromlist from m (using from m import
fromlist...).

m must be a package and not a regular module.

_find_all_submodules(m)
Yield the filenames for submodules of in the same package as m.

_import_module(partname, fqname, parent)
Perform import of the module with basename partname (path) and full name fqname (os.path). Import
is performed by parent.

This will create a reference from the parent node to the module node and will load the module node when
it is not already loaded.

_load_module(fqname, fp, pathname, (suffix, mode, type))
Load the module named fqname from the given pathame. The argument fp is either None, or a stream
where the code for the Python module can be loaded (either byte-code or the source code). The (suffix,
mode, type) tuple are the suffix of the source file, the open mode for the file and the type of module.

Creates a node of the right class and processes the dependencies of the node by scanning the byte-code
for the node.

Returns the resulting node.

_scan_code(code, m)
Scan the code object for module m and update the dependencies of m using the import statemets found in
the code.

This will automaticly scan the code for nested functions, generator expressions and list comprehensions as
well.

_load_package(fqname, pathname)
Load a package directory.

_find_module(name, path[, parent])
Locates a module named name that is not yet part of the graph. This method will raise ImportError
when the module cannot be found or when it is already part of the graph. The name can not be a dotted
name.

The path is the search path used, or None to use the default path.

When the parent is specified name refers to a subpackage of parent, and path should be the search path of
the parent.

Returns the result of the global function find_module.

itergraphreport([name[, flatpackages]])

Todo: To be documented

_replace_paths_in_code(co)
Replace the filenames in code object co using the replace_paths value that was passed to the contructor.
Returns the rewritten code object.

_calc_setuptools_nspackages()
Returns a mapping from package name to a list of paths where that package can be found in
--single-version-externally-managed form.

18 Chapter 4. modulegraph.modulegraph — Find modules used by a script

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/constants.html#None

modulegraph Documentation, Release 0.19

This method is used to be able to find those packages: these use a magic .pth file to ensure that the
package is added to sys.path, as they do not contain an ___init__.py file.

Packages in this form are used by system packages and the “pip” installer.

4.2 Graph nodes

The ModuleGraph contains nodes that represent the various types of modules.

class modulegraph.modulegraph.Alias(value)
This is a subclass of string that is used to mark module aliases.

class modulegraph.modulegraph.Node(identifier)
Base class for nodes, which provides the common functionality.

Nodes can by used as mappings for storing arbitrary data in the node.

Nodes are compared by comparing their identifier.

debug
Debug level (integer)

graphident
The node identifier, this is the value of the identifier argument to the constructor.

identifier
The node identifier, this is the value of the identifier argument to the constructor.

filename
The filename associated with this node.

packagepath
The value of __path__ for this node.

code
The code object associated with this node

globalnames
The set of global names that are assigned to in this module. This includes those names imported through
startimports of Python modules.

startimports
The set of startimports this module did that could not be resolved, ie. a startimport from a non-Python
module.

__contains__(name)
Return if there is a value associated with name.

This method is usually accessed as name in aNode.

__setitem__(name, value)
Set the value of name to value.

This method is usually accessed as aNode[name] = value.

__getitem__(name)
Returns the value of name, raises KeyError when it cannot be found.

This method is usually accessed as value = aNode[name].

4.2. Graph nodes 19

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/exceptions.html#KeyError

modulegraph Documentation, Release 0.19

get(name[, default])
Returns the value of name, or the default value when it cannot be found. The default is None when not
specified.

infoTuple()
Returns a tuple with information used in the repr() output for the node. Subclasses can add additional
informations to the result.

class modulegraph.modulegraph.AliasNode(name, node)
A node that represents an alias from a name to another node.

The value of attribute graphident for this node will be the value of name, the other Node attributed are references
to those attributed in node.

class modulegraph.modulegraph.BadModule(identifier)
Base class for nodes that should be ignored for some reason

class modulegraph.modulegraph.ExcludedModule(identifier)
A module that is explicitly excluded.

class modulegraph.modulegraph.MissingModule(identifier)
A module that is imported but cannot be located.

class modulegraph.modulegraph.InvalidRelativeImport(relative_path, from_name)
A module that was imported using a relative import statement that references a file outside of a toplevel package.

class modulegraph.modulegraph.Script(filename)
A python script.

filename
The filename for the script

class modulegraph.modulegraph.BaseModule(name[, filename[, path]])
The base class for actual modules. The name is the possibly dotted module name, filename is the filesystem path
to the module and path is the value of __path__ for the module.

graphident
The name of the module

filename
The filesystem path to the module.

path
The value of __path__ for this module.

class modulegraph.modulegraph.BuiltinModule(name)
A built-in module (one in sys.builtin_module_names).

class modulegraph.modulegraph.SourceModule(name)
A module for which the python source code is available.

class modulegraph.modulegraph.InvalidSourceModule(name)
A module for which the python source code is available, but where that source code cannot be compiled (due to
syntax errors).

This is a subclass of SourceModule.

New in version 0.12.

class modulegraph.modulegraph.CompiledModule(name)
A module for which only byte-code is available.

class modulegraph.modulegraph.Package(name)
Represents a python package

20 Chapter 4. modulegraph.modulegraph — Find modules used by a script

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/sys.html#sys.builtin_module_names

modulegraph Documentation, Release 0.19

class modulegraph.modulegraph.NamespacePackage(name)
Represents a python namespace package.

This is a subclass of Package.

class modulegraph.modulegraph.Extension(name)
A native extension

Warning: A number of other node types are defined in the module. Those modules aren’t used by modulegraph
and will be removed in a future version.

4.3 Edge data

The edges in a module graph by default contain information about the edge, represented by an instance of
DependencyInfo.

class modulegraph.modulegraph.DependencyInfo(conditional, function, tryexcept, fromlist)
This class is a namedtuple for representing the information on a dependency between two modules.

All attributes can be used to deduce if a dependency is essential or not, and are particularly useful when reporting
on missing modules (dependencies on MissingModule).

fromlist
A boolean that is true iff the target of the edge is named in the “import” list of a “from” import (“from
package import module”).

When the target module is imported multiple times this attribute is false unless all imports are in “import”
list of a “from” import.

function
A boolean that is true iff the import is done inside a function definition, and is false for imports in module
scope (or class scope for classes that aren’t definined in a function).

tryexcept
A boolean that is true iff the import that is done in the “try” or “except” block of a try statement (but not
in the “else” block).

conditional
A boolean that is true iff the import is done in either block of an “if” statement.

When the target of the edge is imported multiple times the function, tryexcept and conditional
attributes of all imports are merged: when there is an import where all these attributes are false the attributes are
false, otherwise each attribute is set to true if it is true for at least one of the imports.

For example, when a module is imported both in a try-except statement and furthermore is imported in a function
(in two separate statements), both tryexcept and functionwill be true. But if there is a third unconditional
toplevel import for that module as well all three attributes are false.

Warning: All attributes but fromlist will be false when the source of a dependency is scanned from a
byte-compiled module instead of a python source file. The fromlist attribute will stil be set correctly.

4.3. Edge data 21

https://docs.python.org/3/library/collections.html#collections.namedtuple

modulegraph Documentation, Release 0.19

4.4 Utility functions

modulegraph.modulegraph.find_module(name[, path])
A version of imp.find_module() that works with zipped packages (and other PEP 302 importers).

modulegraph.modulegraph.moduleInfoForPath(path)
Return the module name, readmode and type for the file at path, or None if it doesn’t seem to be a valid module
(based on its name).

modulegraph.modulegraph.addPackagePath(packagename, path)
Add path to the value of __path__ for the package named packagename.

modulegraph.modulegraph.replacePackage(oldname, newname)
Rename oldname to newname when it is found by the module finder. This is used as a workaround for the hack
that the _xmlplus package uses to inject itself in the xml namespace.

22 Chapter 4. modulegraph.modulegraph — Find modules used by a script

https://docs.python.org/3/library/imp.html#imp.find_module
https://www.python.org/dev/peps/pep-0302

CHAPTER 5

modulegraph.find_modules — High-level module dependency
finding interface

This module provides a high-level interface to the functionality of the modulegraph package.

modulegraph.find_modules.find_modules([scripts[, includes[, packages[, excludes[, path[, de-
bug]]]]]])

High-level interface, takes iterables for: scripts, includes, packages, excludes

And returns a modulegraph.modulegraph.ModuleGraph instance, python_files, and extensions

python_files is a list of pure python dependencies as modulegraph.Module objects,

extensions is a list of platform-specific C extension dependencies as modulegraph.Module objects

modulegraph.find_modules.parse_mf_results(mf)
Return two lists: the first one contains the python files in the graph, the second the C extensions.

Parameters mf – a modulegraph.modulegraph.ModuleGraph instance

5.1 Lower-level functionality

The functionality in this section is much lower level and should probably not be used. It’s mostly documented as a
convenience for maintainers.

modulegraph.find_modules.get_implies()
Return a mapping of implied dependencies. The key is a, possibly dotted, module name and the value a list of
dependencies.

This contains hardcoded list of hard dependencies, for example for C extensions in the standard libary that
perform imports in C code, which the generic dependency finder cannot locate.

modulegraph.find_modules.plat_prepare(includes, packages, excludes)
Updates the lists of includes, packages and excludes for the current platform. This will add items to these lists
based on hardcoded platform information.

23

modulegraph Documentation, Release 0.19

modulegraph.find_modules.find_needed_modules([mf [, scripts[, includes[, packages[, warn
]]]]])

Feeds the given ModuleGraph with the scripts, includes and packages and returns the resulting graph. This
function will create a new graph when mf is not specified or None.

24 Chapter 5. modulegraph.find_modules — High-level module dependency finding interface

CHAPTER 6

modulegraph.util — Utility functions

modulegraph.util.imp_find_module(name, path=None)
This function has the same interface as imp.find_module(), but also works with dotted names.

modulegraph.util.imp_walk(name)
yields the namepart and importer information for every part of a dotted module name, and raises ImportError
when the name cannot be found.

The result elements are tuples with two elements, the first is a module name, the second is the result for imp.
find_module() for that module (taking into account PEP 302 importers)

Deprecated since version 0.10.

modulegraph.util.guess_encoding(fp)
Returns the encoding of a python source file.

25

https://docs.python.org/3/library/imp.html#imp.find_module
https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/imp.html#imp.find_module
https://docs.python.org/3/library/imp.html#imp.find_module
https://www.python.org/dev/peps/pep-0302

modulegraph Documentation, Release 0.19

26 Chapter 6. modulegraph.util — Utility functions

CHAPTER 7

modulegraph.zipio — Read-only filesystem access

This module contains a number of functions that mirror functions found in os and os.path, but have support for
data inside zipfiles as well as regular filesystem objects.

The path argument of all functions below can refer to an object on the filesystem, but can also refer to an entry inside a
zipfile. In the latter case, a prefix of path will be the name of zipfile while the rest refers to an object in that zipfile. As
an example, when somepath/mydata.zip is a zipfile the path somepath/mydata.zip/somefile.txt
will refer to somefile.txt inside the zipfile.

modulegraph.zipio.open(path[, mode])
Open a file, like the built-in open function.

The mode defaults to "r" and must be either "r" or "rb".

modulegraph.zipio.listdir(path)
List the contents of a directory, like os.listdir().

modulegraph.zipio.isfile(path)
Returns true if path exists and refers to a file.

Raises IOError when path doesn’t exist at all.

Based on os.path.isfile()

modulegraph.zipio.isdir(path)
Returns true if path exists and refers to a directory.

Raises IOError when path doesn’t exist at all.

Based on os.path.isdir()

modulegraph.zipio.islink(path)
Returns true if path exists and refers to a symbolic link.

Raises IOError when path doesn’t exist at all.

Based on os.path.islink()

modulegraph.zipio.readlink(path)
Returns the contents of a symbolic link, like os.readlink().

27

https://docs.python.org/3/library/os.html#module-os
https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/os.html#os.listdir
https://docs.python.org/3/library/os.path.html#os.path.isfile
https://docs.python.org/3/library/os.path.html#os.path.isdir
https://docs.python.org/3/library/os.path.html#os.path.islink
https://docs.python.org/3/library/os.html#os.readlink

modulegraph Documentation, Release 0.19

modulegraph.zipio.getmtime(path)
Returns the last modifiction time of a file or directory, like os.path.getmtime().

modulegraph.zipio.getmode(path)
Returns the UNIX file mode for a file or directory, like the st_mode attribute in the result of os.stat(), but
excluding the file type.

28 Chapter 7. modulegraph.zipio — Read-only filesystem access

https://docs.python.org/3/library/os.path.html#os.path.getmtime
https://docs.python.org/3/library/os.html#os.stat

CHAPTER 8

Online Resources

• Sourcecode repository on GitHub

• The issue tracker

29

https://github.com/ronaldoussoren/modulegraph/
https://github.com/ronaldoussoren/modulegraph/issues

modulegraph Documentation, Release 0.19

30 Chapter 8. Online Resources

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

31

modulegraph Documentation, Release 0.19

32 Chapter 9. Indices and tables

Python Module Index

m
modulegraph.find_modules, 23
modulegraph.modulegraph, 15
modulegraph.util, 25
modulegraph.zipio, 27

33

modulegraph Documentation, Release 0.19

34 Python Module Index

Index

Symbols
__contains__() (modulegraph.modulegraph.Node

method), 19
__getitem__() (modulegraph.modulegraph.Node

method), 19
__setitem__() (modulegraph.modulegraph.Node

method), 19
_calc_setuptools_nspackages() (module-

graph.modulegraph.ModuleGraph method),
18

_determine_parent() (module-
graph.modulegraph.ModuleGraph method),
17

_ensure_fromlist() (module-
graph.modulegraph.ModuleGraph method),
17

_find_all_submodules() (module-
graph.modulegraph.ModuleGraph method),
18

_find_head_package() (module-
graph.modulegraph.ModuleGraph method),
17

_find_module() (module-
graph.modulegraph.ModuleGraph method),
18

_import_module() (module-
graph.modulegraph.ModuleGraph method),
18

_load_module() (module-
graph.modulegraph.ModuleGraph method),
18

_load_package() (module-
graph.modulegraph.ModuleGraph method),
18

_load_tail() (module-
graph.modulegraph.ModuleGraph method),
17

_replace_paths_in_code() (module-
graph.modulegraph.ModuleGraph method),

18
_scan_code() (module-

graph.modulegraph.ModuleGraph method),
18

A
addPackagePath() (in module module-

graph.modulegraph), 22
Alias (class in modulegraph.modulegraph), 19
AliasNode (class in modulegraph.modulegraph), 20

B
BadModule (class in modulegraph.modulegraph), 20
BaseModule (class in modulegraph.modulegraph), 20
BuiltinModule (class in modulegraph.modulegraph),

20

C
code (modulegraph.modulegraph.Node attribute), 19
CompiledModule (class in module-

graph.modulegraph), 20
conditional (module-

graph.modulegraph.DependencyInfo attribute),
21

create_xref() (module-
graph.modulegraph.ModuleGraph method),
16

createReference() (module-
graph.modulegraph.ModuleGraph method),
16

D
debug (modulegraph.modulegraph.Node attribute), 19
DependencyInfo (class in module-

graph.modulegraph), 21

E
ExcludedModule (class in module-

graph.modulegraph), 20

35

modulegraph Documentation, Release 0.19

Extension (class in modulegraph.modulegraph), 21

F
filename (modulegraph.modulegraph.BaseModule at-

tribute), 20
filename (modulegraph.modulegraph.Node attribute),

19
filename (modulegraph.modulegraph.Script attribute),

20
find_module() (in module module-

graph.modulegraph), 22
find_modules() (in module module-

graph.find_modules), 23
find_needed_modules() (in module module-

graph.find_modules), 23
findNode() (module-

graph.modulegraph.ModuleGraph method),
16

foldReferences() (module-
graph.modulegraph.ModuleGraph method),
16

fromlist (modulegraph.modulegraph.DependencyInfo
attribute), 21

function (modulegraph.modulegraph.DependencyInfo
attribute), 21

G
get() (modulegraph.modulegraph.Node method), 19
get_implies() (in module module-

graph.find_modules), 23
getmode() (in module modulegraph.zipio), 28
getmtime() (in module modulegraph.zipio), 27
getReferences() (module-

graph.modulegraph.ModuleGraph method),
16

getReferers() (module-
graph.modulegraph.ModuleGraph method),
16

globalnames (modulegraph.modulegraph.Node at-
tribute), 19

graphident (modulegraph.modulegraph.BaseModule
attribute), 20

graphident (modulegraph.modulegraph.Node at-
tribute), 19

graphreport() (module-
graph.modulegraph.ModuleGraph method),
17

guess_encoding() (in module modulegraph.util), 25

I
identifier (modulegraph.modulegraph.Node at-

tribute), 19
imp_find_module() (in module modulegraph.util),

25

imp_walk() (in module modulegraph.util), 25
implyNodeReference() (module-

graph.modulegraph.ModuleGraph method),
16

import_hook() (module-
graph.modulegraph.ModuleGraph method),
16

infoTuple() (modulegraph.modulegraph.Node
method), 20

InvalidRelativeImport (class in module-
graph.modulegraph), 20

InvalidSourceModule (class in module-
graph.modulegraph), 20

isdir() (in module modulegraph.zipio), 27
isfile() (in module modulegraph.zipio), 27
islink() (in module modulegraph.zipio), 27
itergraphreport() (module-

graph.modulegraph.ModuleGraph method),
18

L
listdir() (in module modulegraph.zipio), 27

M
MissingModule (class in modulegraph.modulegraph),

20
ModuleGraph (class in modulegraph.modulegraph),

15, 17
modulegraph.find_modules (module), 23
modulegraph.modulegraph (module), 15
modulegraph.util (module), 25
modulegraph.zipio (module), 27
moduleInfoForPath() (in module module-

graph.modulegraph), 22

N
NamespacePackage (class in module-

graph.modulegraph), 20
Node (class in modulegraph.modulegraph), 19

O
open() (in module modulegraph.zipio), 27

P
Package (class in modulegraph.modulegraph), 20
packagepath (modulegraph.modulegraph.Node at-

tribute), 19
parse_mf_results() (in module module-

graph.find_modules), 23
path (modulegraph.modulegraph.BaseModule at-

tribute), 20
plat_prepare() (in module module-

graph.find_modules), 23

36 Index

modulegraph Documentation, Release 0.19

Python Enhancement Proposals
PEP 302, 22, 25

R
readlink() (in module modulegraph.zipio), 27
replacePackage() (in module module-

graph.modulegraph), 22
report() (modulegraph.modulegraph.ModuleGraph

method), 17
run_script() (module-

graph.modulegraph.ModuleGraph method),
15

S
Script (class in modulegraph.modulegraph), 20
SourceModule (class in modulegraph.modulegraph),

20
startimports (modulegraph.modulegraph.Node at-

tribute), 19

T
tryexcept (modulegraph.modulegraph.DependencyInfo

attribute), 21

Index 37

	Release history
	License
	Commandline tools
	modulegraph.modulegraph — Find modules used by a script
	modulegraph.find_modules — High-level module dependency finding interface
	modulegraph.util — Utility functions
	modulegraph.zipio — Read-only filesystem access
	Online Resources
	Indices and tables
	Python Module Index
	Index

