

Modulegraph - Python module dependency graph

modulegraph determines a dependency graph between Python modules primarily
by bytecode analysis for import statements.

modulegraph uses similar methods to modulefinder [https://docs.python.org/3/library/modulefinder.html#module-modulefinder] from the standard library,
but uses a more flexible internal representation, has more extensive
knowledge of special cases, and is extensible.

Contents:

	Release history

	License

	Commandline tools

	modulegraph.modulegraph — Find modules used by a script

	modulegraph.find_modules — High-level module dependency finding interface

	modulegraph.util — Utility functions

	modulegraph.zipio — Read-only filesystem access

Online Resources

	Sourcecode repository on GitHub [https://github.com/ronaldoussoren/modulegraph/]

	The issue tracker [https://github.com/ronaldoussoren/modulegraph/issues]

Indices and tables

	Index

	Module Index

	Search Page

Release history

0.19.4

	Fix broken python 2.7 support

PR by Josua Root

	Initial support for Python 3.12

The changes to support Python 3.12 are a bit rough,
tests pass but I’m not 100% convinced the changes
are correct.

0.19.3

	Fix incompatibility with Python 3.11

0.19.2

	Fix project links in PyPI sidebar

0.19.1

	Explictly mention python 3.10 support in package metadata

0.19

	Fix incorrect path when package __init__ is an extension.

0.18

	Avoid exception when one of the items on “packages” is not a package
(modulegraph.find_modules.find_needed_modules)

	#45: Modulegraph.foldReferences() called the wrong method

Reported by Anthony Foglia.

0.17

	The .pyc format changed a little in Python 3.7

0.16

Features:

	Add LICENSE file to distribution

	Don’t rely on pkg_resources to calculate package version

	Replace use of optparse by argparse as the former is deprecated

Patch by htgoebel

	Attempt to reduce the maximum recursion needed to create the ModuleGraph

	Don’t include the file type in the result from zipio.getmode

	Fix mismatched indents/dedents in ModuleGraph debug output

Patch by codewarrior0

Bug fixes:

	Testsuite now passes on Windows (testd through appveyor)

This only required changes to remove platform dependencies
from the test suite.

0.15

Features:

	Issue #39: Traceback with for a syntax error when compiling async function

On Python 3.5 some (invalid) async function definitions caused a modulegraph
traceback, instead of adding “InvalidSourceModule” nodes to the graph.

	Issue #40: The graph now contains nodes of type “InvalidRelativeImport” for
attempts to use relative imports that walk outside of a toplevel
package.

	Module modulegraph.find_modules can no longer be used a script,
use python -m modulegraph instead.

Bugfixes:

	Issue 38: Dot output broken in Python 3

Patch by user elnuno on bitbucket.

	Issue 36: Make sure test suite works on systems other than macOS

Patch by Hartmut Goebel

	Add support for “async def” to the AST scanner, needed to
properly recognize imports in async function definitions.

0.14

Bugfixes:

	#33: Error scanning bytecode on python 3.4 or later

The code using dis.get_instructions to scan the bytecode
on Python 3.4 or later didn’t work properly causing problems
when trying to scan bytecode.

0.13

	Various documentation fixes by Thomas Kluyver.

	Fix incompatibility with recent versions of setuptools

See also issue #206 in py2apps tracker [https://github.com/ronaldoussoren/py2app/issues/206/py2app-doesnt-work-with-release-433-of] for more information.

	Python 3: Ignore BOM at start of input files when compiling them.

This matches the behavior of CPython, and avoids hard to diagnose problems.
See also issue #178 in the py2app tracker [https://github.com/ronaldoussoren/py2app/issues/178/python-3-syntaxerror-invalid-character-in]

	Python 3.6 introduced a new bytecode format (wordcode), adjust the
bytecode scanner for that.

0.12.1

	Issue #25: Complex python files could cause an “maximum recursion depth exceeded”
exception due to using stack-based recursion to walk the module AST.

0.12

	Added ‘modulegraph.modulegraph.InvalidSourceModule’. This graph node is
used for Python source modules that cannot be compiled (for example because
they contain syntax errors).

This is primarily useful for being able to create a graph for packages
that have python 2.x or python 3.x compatibility in separate modules that
contain code that isn’t valid in the “other” python version.

	Added ‘modulegraph.modulegraph.InvalidCompiledModule’. This graph node
is used for Python bytecode modules that cannot be loaded.

	Added ‘modulegraph.modulegraph.NamespacePackage’.

Patch by bitbucket user htgoebel.

	No longer add a MissingModule node to the graph for ‘collections.defaultdict’
when using ‘from collections import defaultdict’ (‘collections.defaultdict’
is an attribute of ‘collections’, not a submodule).

	Fixed typo in ModuleGraph.getReferences()

	Added ModuleGraph.getReferers(tonode). This methods yields the
nodes that are referencing tonode (the reverse of getReferences)

	The graph will no longer contain MissingModule nodes when using ‘from … import name’ to
import a global variable in a python module.

There will still be MissingModule nodes for global variables in C extentions, and
for ‘from missing import name’ when ‘missing’ is itself a MissingModule.

	Issue #18: Don’t assume that a PEP 302 loader object has a path attribute. That
attribute is not documented and is not always present.

0.11.2

	

0.11.1

	Issue #145: Don’t exclude the platform specific ‘path’ modules (like ntpath)

0.11

This is a feature release

Features

	Hardcode knowlegde about the compatibility aliases in the email
module (for python 2.5 upto 3.0).

This makes it possible to remove a heavy-handed recipe from py2app.

	Added modegraph.zipio.getmode to fetch the Unix file mode
for a file.

	Added some handy methods to modulegraph.modulegraph.ModuleGraph.

0.10.5

This is a bugfix release

	Don’t look at the file extension to determine the file type
in modulegraph.find_modules.parse_mf_results, but use the
class of the item.

	Issue #13: Improved handing of bad relative imports
(“from .foo import bar”), these tended to raise confusing errors and
are now handled like any other failed import.

0.10.4

This is a bugfix release

	There were no ‘classifiers’ in the package metadata due to a bug
in setup.py.

0.10.3

This is a bugfix release

Bugfixes

	modulegraph.find.modules.parse_mf_results failed when the main script of
a py2app module didn’t have a file name ending in ‘.py’.

0.10.2

This is a bugfix release

Bugfixes

	Issue #12: modulegraph would sometimes find the wrong package __init__
module due to using the wrong search method. One easy way to reproduce the
problem was to have a toplevel module named __init__.

Reported by Kentzo.

0.10.1

This is a bugfix release

Bugfixes

	Issue #11: creating xrefs and dotty graphs from modulegraphs (the –xref
and –graph options of py2app) didn’t work with python 3 due to use of
APIs that aren’t available in that version of python.

Reported by Andrew Barnert.

0.10

This is a minor feature release

Features

	modulegraph.find_modules.find_needed_modules claimed to automaticly
include subpackages for the “packages” argument as well, but that code
didn’t work at all.

	Issue #9: The modulegraph script is deprecated, use
“python -mmodulegraph” instead.

	Issue #10: Ensure that the result of “zipio.open” can be used
in a with statement (that is, with zipio.open(...) as fp.

	No longer use “2to3” to support Python 3.

Because of this modulegraph now supports Python 2.6
and later.

	Slightly improved HTML output, which makes it easier
to manipulate the generated HTML using JavaScript.

Patch by anatoly techtonik.

	Ensure modulegraph works with changes introduced after
Python 3.3b1.

	Implement support for PEP 420 (“Implicit namespace packages”)
in Python 3.3.

	modulegraph.util.imp_walk is deprecated and will be
removed in the next release of this package.

Bugfixes

	The module graph was incomplete, and generated incorrect warnings
along the way, when a subpackage contained import statements for
submodules.

An example of this is sqlalchemy.util, the __init__.py file
for this package contains imports of modules in that modules using
the classic relative import syntax (that is import compat to
import sqlalchemy.util.compat). Until this release modulegraph
searched the wrong path to locate these modules (and hence failed
to find them).

0.9.2

This is a bugfix release

Bugfixes

	The ‘packages’ option to modulegraph.find_modules.find_modules ignored
the search path argument but always used the default search path.

	The ‘imp_find_modules’ function in modulegraph.util has an argument ‘path’,
this was a string in previous release and can now also be a sequence.

	Don’t crash when a module on the ‘includes’ list doesn’t exist, but warn
just like for missing ‘packages’ (modulegraph.find_modules.find_modules)

0.9.1

This is a bugfix release

Bug fixes

	Fixed the name of nodes imports in packages where the first element of
a dotted name can be found but the rest cannot. This used to create
a MissingModule node for the dotted name in the global namespace instead
of relative to the package.

That is, given a package “pkg” with submodule “sub” if the “__init__.py”
of “pkg” contains “import sub.nomod” we now create a MissingModule node
for “pkg.sub.nomod” instead of “sub.nomod”.

This fixes an issue with including the crcmod package in application
bundles, first reported on the pythonmac-sig mailinglist by
Brendan Simon.

0.9

This is a minor feature release

Features:

	Documentation is now generated using sphinx [http://pypi.python.org/pypi/sphinx]
and can be viewed at <http://packages.python.org/modulegraph>.

The documention is very rough at this moment and in need of reorganisation and
language cleanup. I’ve basiclly writting the current version by reading the code
and documenting what it does, the order in which classes and methods are document
is therefore not necessarily the most useful.

	The repository has moved to bitbucket

	Renamed modulegraph.modulegraph.AddPackagePath to addPackagePath,
likewise ReplacePackage is now replacePackage. The old name is still
available, but is deprecated and will be removed before the 1.0 release.

	modulegraph.modulegraph contains two node types that are unused and
have unclear semantics: FlatPackage and ArchiveModule. These node
types are deprecated and will be removed before 1.0 is released.

	Added a simple commandline tool (modulegraph) that will print information
about the dependency graph of a script.

	Added a module (zipio) for dealing with paths that may refer to entries
inside zipfiles (such as source paths referring to modules in zipped eggfiles).

With this addition modulegraph.modulegraph.os_listdir is deprecated and
it will be removed before the 1.0 release.

Bug fixes:

	The __cmp__ method of a Node no longer causes an exception
when the compared-to object is not a Node. Patch by Ivan Kozik.

	Issue #1: The initialiser for modulegraph.ModuleGraph caused an exception
when an entry on the path (sys.path) doesn’t actually exist.

Fix by “skurylo”, testcase by Ronald.

	The code no longer worked with python 2.5, this release fixes that.

	Due to the switch to mercurial setuptools will no longer include
all required files. Fixed by adding a MANIFEST.in file

	The method for printing a .dot representation of a ModuleGraph
works again.

0.8.1

This is a minor feature release

Features:

	from __future__ import absolute_import is now supported

	Relative imports (from . import module) are now supported

	Add support for namespace packages when those are installed
using option --single-version-externally-managed (part
of setuptools/distribute)

0.8

This is a minor feature release

Features:

	Initial support for Python 3.x

	It is now possible to run the test suite
using python setup.py test.

(The actual test suite is still fairly minimal though)

License

Copyright (c) Bob Ippolito

Parts are copyright (c) 2010-2014 Ronald Oussoren

MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Commandline tools

The package can be used as a script using “python -mmodulegraph”.

This script calculates the module graph for the scripts passed
on the commandline and by default prints a list of modules
in the objectgraph, and their type and location.

The script has a number of options to change the output:

	-d: Increase the debug level

	-q: Clear the debug level (emit minimal output)

	-m: The arguments are module names instead of script files

	-x name: Add name to the list of excludes

	-p path: Add path to the module search path

	-g: Emit a .dot file instead of a list of modules

	-h: Emit a .html file instead of a list of modules

Deprecation warning

The package also installs a command-line tool named “modulegraph”,
this command-line tool is deprecated and will be removed in a
future version.

modulegraph.modulegraph — Find modules used by a script

This module defines ModuleGraph, which is used to find
the dependencies of scripts using bytecode analysis.

A number of APIs in this module refer to filesystem path. Those paths can refer to
files inside zipfiles (for example when there are zipped egg files on sys.path [https://docs.python.org/3/library/sys.html#sys.path]).
Filenames referring to entries in a zipfile are not marked any way, if "somepath.zip"
refers to a zipfile, that is "somepath.zip/embedded/file" will be used to refer to
embedded/file inside the zipfile.

The actual graph

	
class modulegraph.modulegraph.ModuleGraph([path[, excludes[, replace_paths[, implies[, graph[, debug]]]]]])

	Create a new ModuleGraph object. Use the run_script() method to add scripts,
and their dependencies to the graph.

	Parameters:

	
	path – Python search path to use, defaults to sys.path [https://docs.python.org/3/library/sys.html#sys.path]

	excludes – Iterable with module names that should not be included as a dependency

	replace_paths – List of pathname rewrites (old, new). When this argument is
supplied the co_filename attributes of code objects get rewritten before scanning
them for dependencies.

	implies – Implied module dependencies, a mapping from a module name to the list
of modules it depends on. Use this to tell modulegraph about dependencies that cannot
be found by code inspection (such as imports from C code or using the __import__() [https://docs.python.org/3/library/functions.html#import__]
function).

	graph – A precreated Graph object to use, the
default is to create a new one.

	debug – The ObjectGraph debug level.

	
run_script(pathname[, caller])

	Create, and return, a node by path (not module name). The pathname should
refer to a Python source file and will be scanned for dependencies.

The optional argument caller is the the node that calls this script,
and is used to add a reference in the graph.

	
import_hook(name[[, caller[, fromlist[, level, [, attr]]]])

	Import a module and analyse its dependencies

	Parameters:

	
	name – The module name

	caller – The node that caused the import to happen

	fromlist – The list of names to import, this is an empty list for
import name and a list of names for from name import a, b, c.

	level – The import level. The value should be -1 for classical Python 2
imports, 0 for absolute imports and a positive number for relative imports (
where the value is the number of leading dots in the imported name).

	attr – Attributes for the graph edge.

	
implyNodeReference(node, other, edgeData=None)

	Explictly mark that node depends on other. Other is either
a node or the name of a module that will be
searched for as if it were an absolute import.

	
createReference(fromnode, tonode[, edge_data])

	Create a reference from fromnode to tonode, with optional edge data.

The default for edge_data is "direct".

	
getReferences(fromnode)

	Yield all nodes that fromnode refers to. That is, all modules imported
by fromnode.

Node None [https://docs.python.org/3/library/constants.html#None] is the root of the graph, and refers to all notes that were
explicitly imported by run_script() or import_hook(), unless you use
an explicit parent with those methods.

New in version 0.11.

	
getReferers(tonode, collapse_missing_modules=True)

	Yield all nodes that refer to tonode. That is, all modules that import
tonode.

If collapse_missing_modules is false this includes refererences from
MissingModule nodes, otherwise MissingModule nodes
are replaced by the “real” nodes that reference this missing node.

New in version 0.12.

	
foldReferences(pkgnode)

	Hide all submodule nodes for package pkgnode and add ingoing and outgoing
edges to pkgnode based on the edges from the submodule nodes.

This can be used to simplify a module graph: after folding ‘email’ all
references to modules in the ‘email’ package are references to the package.

	
findNode(name)

	Find a node by identifier. If a node by that identifier exists, it will be returned.

If a lazy node exists by that identifier with no dependencies (excluded), it will be
instantiated and returned.

If a lazy node exists by that identifier with dependencies, it and its
dependencies will be instantiated and scanned for additional depende

	
create_xref([out])

	Write an HTML file to the out stream (defaulting to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout]).

The HTML file contains a textual description of the dependency graph.

	
graphreport([fileobj[, flatpackages]])

	
Todo

To be documented

 modulegraph.find_modules — High-level module dependency finding interface

modulegraph.find_modules — High-level module dependency finding interface

This module provides a high-level interface to the functionality of
the modulegraph package.

	
modulegraph.find_modules.find_modules([scripts[, includes[, packages[, excludes[, path[, debug]]]]]])

	High-level interface, takes iterables for: scripts, includes, packages, excludes

And returns a modulegraph.modulegraph.ModuleGraph instance,
python_files, and extensions

python_files is a list of pure python dependencies as modulegraph.Module objects,

extensions is a list of platform-specific C extension dependencies as modulegraph.Module objects

	
modulegraph.find_modules.parse_mf_results(mf)

	Return two lists: the first one contains the python files in the graph,
the second the C extensions.

	Parameters:

	mf – a modulegraph.modulegraph.ModuleGraph instance

Lower-level functionality

The functionality in this section is much lower level and should probably
not be used. It’s mostly documented as a convenience for maintainers.

	
modulegraph.find_modules.get_implies()

	Return a mapping of implied dependencies. The key is a, possibly dotted,
module name and the value a list of dependencies.

This contains hardcoded list of hard dependencies, for example for C
extensions in the standard libary that perform imports in C code, which
the generic dependency finder cannot locate.

	
modulegraph.find_modules.plat_prepare(includes, packages, excludes)

	Updates the lists of includes, packages and excludes for the current
platform. This will add items to these lists based on hardcoded platform
information.

	
modulegraph.find_modules.find_needed_modules([mf[, scripts[, includes[, packages[, warn]]]]])

	Feeds the given ModuleGraph with
the scripts, includes and packages and returns the resulting
graph. This function will create a new graph when mf is not specified
or None.

 modulegraph.util — Utility functions

modulegraph.util — Utility functions

	
modulegraph.util.imp_find_module(name, path=None)

	This function has the same interface as
imp.find_module() [https://docs.python.org/3/library/imp.html#imp.find_module], but also works with
dotted names.

	
modulegraph.util.imp_walk(name)

	yields the namepart and importer information
for every part of a dotted module name, and
raises ImportError [https://docs.python.org/3/library/exceptions.html#ImportError] when the name
cannot be found.

The result elements are tuples with two
elements, the first is a module name,
the second is the result for imp.find_module() [https://docs.python.org/3/library/imp.html#imp.find_module]
for that module (taking into account PEP 302 [https://www.python.org/dev/peps/pep-0302]
importers)

Deprecated since version 0.10.

	
modulegraph.util.guess_encoding(fp)

	Returns the encoding of a python source file.

 modulegraph.zipio — Read-only filesystem access

modulegraph.zipio — Read-only filesystem access

This module contains a number of functions that mirror functions found
in os [https://docs.python.org/3/library/os.html#module-os] and os.path [https://docs.python.org/3/library/os.path.html#module-os.path], but have support for data inside
zipfiles as well as regular filesystem objects.

The path argument of all functions below can refer to an object
on the filesystem, but can also refer to an entry inside a zipfile. In
the latter case, a prefix of path will be the name of zipfile while
the rest refers to an object in that zipfile. As an example, when
somepath/mydata.zip is a zipfile the path somepath/mydata.zip/somefile.txt
will refer to somefile.txt inside the zipfile.

	
modulegraph.zipio.open(path[, mode])

	Open a file, like the built-in open function.

The mode defaults to "r" and must be either "r" or "rb".

	
modulegraph.zipio.listdir(path)

	List the contents of a directory, like os.listdir() [https://docs.python.org/3/library/os.html#os.listdir].

	
modulegraph.zipio.isfile(path)

	Returns true if path exists and refers to a file.

Raises IOError when path doesn’t exist at all.

Based on os.path.isfile() [https://docs.python.org/3/library/os.path.html#os.path.isfile]

	
modulegraph.zipio.isdir(path)

	Returns true if path exists and refers to a directory.

Raises IOError when path doesn’t exist at all.

Based on os.path.isdir() [https://docs.python.org/3/library/os.path.html#os.path.isdir]

	
modulegraph.zipio.islink(path)

	Returns true if path exists and refers to a symbolic link.

Raises IOError when path doesn’t exist at all.

Based on os.path.islink() [https://docs.python.org/3/library/os.path.html#os.path.islink]

	
modulegraph.zipio.readlink(path)

	Returns the contents of a symbolic link, like os.readlink() [https://docs.python.org/3/library/os.html#os.readlink].

	
modulegraph.zipio.getmtime(path)

	Returns the last modifiction time of a file or directory, like
os.path.getmtime() [https://docs.python.org/3/library/os.path.html#os.path.getmtime].

	
modulegraph.zipio.getmode(path)

	Returns the UNIX file mode for a file or directory, like the
st_mode attribute in the result of os.stat() [https://docs.python.org/3/library/os.html#os.stat], but excluding
the file type.

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 modulegraph	

 	
 	
 modulegraph.find_modules	
 High-level module dependency finding interface

 	
 	
 modulegraph.modulegraph	
 Find modules used by a script

 	
 	
 modulegraph.util	
 Utilitie functions

 	
 	
 modulegraph.zipio	
 Read-only filesystem access with ZIP support

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T

_

 	
 	__contains__() (modulegraph.modulegraph.Node method)

 	__getitem__() (modulegraph.modulegraph.Node method)

 	__setitem__() (modulegraph.modulegraph.Node method)

 	_calc_setuptools_nspackages() (modulegraph.modulegraph.ModuleGraph method)

 	_determine_parent() (modulegraph.modulegraph.ModuleGraph method)

 	_ensure_fromlist() (modulegraph.modulegraph.ModuleGraph method)

 	_find_all_submodules() (modulegraph.modulegraph.ModuleGraph method)

 	
 	_find_head_package() (modulegraph.modulegraph.ModuleGraph method)

 	_find_module() (modulegraph.modulegraph.ModuleGraph method)

 	_import_module() (modulegraph.modulegraph.ModuleGraph method)

 	_load_module() (modulegraph.modulegraph.ModuleGraph method)

 	_load_package() (modulegraph.modulegraph.ModuleGraph method)

 	_load_tail() (modulegraph.modulegraph.ModuleGraph method)

 	_replace_paths_in_code() (modulegraph.modulegraph.ModuleGraph method)

 	_scan_code() (modulegraph.modulegraph.ModuleGraph method)

A

 	
 	addPackagePath() (in module modulegraph.modulegraph)

 	
 	Alias (class in modulegraph.modulegraph)

 	AliasNode (class in modulegraph.modulegraph)

B

 	
 	BadModule (class in modulegraph.modulegraph)

 	
 	BaseModule (class in modulegraph.modulegraph)

 	BuiltinModule (class in modulegraph.modulegraph)

C

 	
 	code (modulegraph.modulegraph.Node attribute)

 	CompiledModule (class in modulegraph.modulegraph)

 	
 	conditional (modulegraph.modulegraph.DependencyInfo attribute)

 	create_xref() (modulegraph.modulegraph.ModuleGraph method)

 	createReference() (modulegraph.modulegraph.ModuleGraph method)

D

 	
 	debug (modulegraph.modulegraph.Node attribute)

 	
 	DependencyInfo (class in modulegraph.modulegraph)

E

 	
 	ExcludedModule (class in modulegraph.modulegraph)

 	
 	Extension (class in modulegraph.modulegraph)

F

 	
 	filename (modulegraph.modulegraph.BaseModule attribute)

 	(modulegraph.modulegraph.Node attribute)

 	(modulegraph.modulegraph.Script attribute)

 	find_module() (in module modulegraph.modulegraph)

 	find_modules() (in module modulegraph.find_modules)

 	
 	find_needed_modules() (in module modulegraph.find_modules)

 	findNode() (modulegraph.modulegraph.ModuleGraph method)

 	foldReferences() (modulegraph.modulegraph.ModuleGraph method)

 	fromlist (modulegraph.modulegraph.DependencyInfo attribute)

 	function (modulegraph.modulegraph.DependencyInfo attribute)

G

 	
 	get() (modulegraph.modulegraph.Node method)

 	get_implies() (in module modulegraph.find_modules)

 	getmode() (in module modulegraph.zipio)

 	getmtime() (in module modulegraph.zipio)

 	getReferences() (modulegraph.modulegraph.ModuleGraph method)

 	
 	getReferers() (modulegraph.modulegraph.ModuleGraph method)

 	globalnames (modulegraph.modulegraph.Node attribute)

 	graphident (modulegraph.modulegraph.BaseModule attribute)

 	(modulegraph.modulegraph.Node attribute)

 	graphreport() (modulegraph.modulegraph.ModuleGraph method)

 	guess_encoding() (in module modulegraph.util)

I

 	
 	identifier (modulegraph.modulegraph.Node attribute)

 	imp_find_module() (in module modulegraph.util)

 	imp_walk() (in module modulegraph.util)

 	implyNodeReference() (modulegraph.modulegraph.ModuleGraph method)

 	import_hook() (modulegraph.modulegraph.ModuleGraph method)

 	infoTuple() (modulegraph.modulegraph.Node method)

 	
 	InvalidRelativeImport (class in modulegraph.modulegraph)

 	InvalidSourceModule (class in modulegraph.modulegraph)

 	isdir() (in module modulegraph.zipio)

 	isfile() (in module modulegraph.zipio)

 	islink() (in module modulegraph.zipio)

 	itergraphreport() (modulegraph.modulegraph.ModuleGraph method)

L

 	
 	listdir() (in module modulegraph.zipio)

M

 	
 	MissingModule (class in modulegraph.modulegraph)

 	ModuleGraph (class in modulegraph.modulegraph), [1]

 	modulegraph.find_modules (module)

 	
 	modulegraph.modulegraph (module)

 	modulegraph.util (module)

 	modulegraph.zipio (module)

 	moduleInfoForPath() (in module modulegraph.modulegraph)

N

 	
 	NamespacePackage (class in modulegraph.modulegraph)

 	
 	Node (class in modulegraph.modulegraph)

O

 	
 	open() (in module modulegraph.zipio)

P

 	
 	Package (class in modulegraph.modulegraph)

 	packagepath (modulegraph.modulegraph.Node attribute)

 	parse_mf_results() (in module modulegraph.find_modules)

 	
 	path (modulegraph.modulegraph.BaseModule attribute)

 	plat_prepare() (in module modulegraph.find_modules)

 	
 Python Enhancement Proposals

 	PEP 302, [1]

R

 	
 	readlink() (in module modulegraph.zipio)

 	replacePackage() (in module modulegraph.modulegraph)

 	
 	report() (modulegraph.modulegraph.ModuleGraph method)

 	run_script() (modulegraph.modulegraph.ModuleGraph method)

S

 	
 	Script (class in modulegraph.modulegraph)

 	
 	SourceModule (class in modulegraph.modulegraph)

 	startimports (modulegraph.modulegraph.Node attribute)

T

 	
 	tryexcept (modulegraph.modulegraph.DependencyInfo attribute)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Modulegraph - Python module dependency graph

 		
 Release history

 		
 0.19.4

 		
 0.19.3

 		
 0.19.2

 		
 0.19.1

 		
 0.19

 		
 0.18

 		
 0.17

 		
 0.16

 		
 0.15

 		
 0.14

 		
 0.13

 		
 0.12.1

 		
 0.12

 		
 0.11.2

 		
 0.11.1

 		
 0.11

 		
 Features

 		
 0.10.5

 		
 0.10.4

 		
 0.10.3

 		
 Bugfixes

 		
 0.10.2

 		
 Bugfixes

 		
 0.10.1

 		
 Bugfixes

 		
 0.10

 		
 Features

 		
 Bugfixes

 		
 0.9.2

 		
 Bugfixes

 		
 0.9.1

 		
 Bug fixes

 		
 0.9

 		
 0.8.1

 		
 0.8

 		
 License

 		
 MIT License

 		
 Commandline tools

 		
 Deprecation warning

 		
 modulegraph.modulegraph — Find modules used by a script

 		
 The actual graph

 		
 Mostly internal methods

 		
 Graph nodes

 		
 Edge data

 		
 Utility functions

 		
 modulegraph.find_modules — High-level module dependency finding interface

 		
 Lower-level functionality

 		
